1916 А. Эйнштейн представляет концепцию вынужденного излучения
1920 И. Франк и Ф. Райхе подтвердили существование метастабильных состояний в возбужденном состоянии
1927 Поль Дирак создает квантовую теорию вынужденного излучения
1928 Р. Ладенбург и Е. Копферман исследовали отрицательную дисперсию света в газовом разряде (в неоне)
1940 В. А. Фабрикант исследовал отрицательное поглощение света
1947 В. Лэмб и Р. Резерфорд впервые демонстрируют стимулированную эмиссию
1950 К. М. Пурселл и Р. Ф. Паунд получили вынужденное излучение во фториде лития при быстром переключении магнитного поля (инвертированный спин)
1951 В. А. Фабрикант, Н. Н. Вудинский, Ф. А Бутаев провели эксперименты по усилению электромагнитного излучения в газах
Ч. Таунс исследовал возможности создания генератора субмиллиметрового диапазона
Ц. С. ван Гиил, Г. Г. Хопкинс и Н. С. Капани изготовили первое оптическое волокно
1952 Дж. Вебер разработал теорию микроволновых резонаторов, шумов и чувствительности усилителей
1953 Дж. фон Нейман разработал теорию фотонного усиления
1954 Н. Г. Басов, О. М. Прохоров; Ч. Таунс, В. Гордон; Дж. Цайгер, К. Шимода, Т. Ванг создали независимо друг от друга первый мазер на молекулах аммиака
Н. С. Капани ввел термин «волоконная оптика»
1956 Н. Бломберг разработал теорию трехуровневого твердотельного лазера
1958 Л. Шавлов и Ч. Таунс проводят расчеты мазеров для видимого и инфракрасного диапазонов
1959 Г. Гоулд вводит термин «лазер» и представляет чертежи оптического мазера в американское патентное бюро
Н. Г. Басок делает теоретическое обоснование полупроводникового лазера
1960 Т. Мейман создал первый генератор электромагнитного излучения на кристалле рубина (Cr 3 + : Al 2 O 3) (λ = 690 нм)
А. Джаван, В. Беннет и Д. Ериот построили гелий-неоновый лазер (λ = 1,15 мкм)
П. Сорокин и М. Стевенсон получили стимулированную эмиссию на U 3 + : CaF 2 -кристалле (λ = 2, 5 мкм и λ = 2,6 мкм)
Ф. Г. Гоутерманс предложил эксимер как лазерное среду
1961 А. Г. Фокс и Т. Ли; Г. Д. Бойд и Дж. П. Гордон создали теорию оптических резонаторов со сферическими зеркалами
П. П. Сорокин и М. Дж. Стевенсон, В. Кайзер и другие получили стимулированную эмиссию на Sm 2+ : CaF 2 -кристалле (λ = 708 нм)
E. Шнитцер получил стимулированную эмиссию на Nd 3 + : стекле (λ = 1,062 мкм)
Д. Полани создал химический лазер на экзотермических газовых реакциях
Р. В. Геллварт предложил генерацию мощных лазерных импульсов с помощью модуляции добробности
П. А. Франкен получил генерацию второй гармоники (удвоение частоты) в рубиновом лазере с помощью кристалла кварца
1962 Д. Уайт и Дж. Риджен создали He-Ne лазер с длиной волны 632,8 нм
Р. Холл и другие; Н. Г. Басов и другие изобрели полупроводниковые лазеры на арсениде галлия (λ = 840 нм, λ = 710 нм)
Д. Кляйнман и П. Кислюк построили первый рефлектор Фабри-Перо для селекции мод в лазерном резонаторе
Н. Бломберген и другие выдвинули теорию распространения волн в нелинейных средах (удвоение частоты, параметрические процессы, стимулированный эффект Рамана, многофононная ионизация и другие)
1963 Л. Джонсон и другие представили первые перестроений лазеры на переходных металлах, например Ni 2 + : MgF 2 (λ = 1,62 мкм … 1,8 мкм)
Ф. Дилл, В. Говард и другие получили непрерывную стимулированную эмиссии в GaAs диодах при температуре от 2 K до 77 K (λ = 840 нм)
Н. Г. Басов и А. Н. Ораевский предложили идею тепловой накачки
Г. Херд создал первый азотный лазер
Г. Кромер, Ж. И. Алферов и Р. Ф. Казаринов предложили двойные гетероструктуры для лазерных диодов
Р. Нойман предложил возбуждать твердотельные среды с помощью лазерных диодов
M. Коупланд применил GaAs диод как оптический усилитель
1964 Дж. Гойзик и другие получили стимулированную эмиссию на 1,064 мкм в Nd:YAG-лазере (Nd 3 + : Y 3 Al 5 O 12)
К. Пател построил первые лазеры на CO2 -газе
Л. Харгроу, Р. Рорк и М. Поллак получили синхронизации мод в He-Ne лазере с продолжительностью импульса 600 пс
В. Бриджес реализовал аргон-ионный лазер (λ = 488 нм, λ = 514 нм), ксеноновый и криптоновых лазер
Г. Гэбби создал 337-мкм-HCN-лазер, первый эффективный субмиллиметровый лазер
Р. Кайес и Т. Квист построили первый твердотельный лазер с накачкой лазерными диодами (U 3 + : CaF 2 -кристалл возбуждался GaAs-диодами) с рабочей температурой 4,2 K
П. Кафалас, Б. Соффер и П. Сверокин реализовали пассивную модуляцию добротности с помощью насыщенного абсорбера
1965 Дж. Каспер и Дж. Пиментал изобрели химический лазер на HCl, импульсный с оптическим инициированием (λ = 3,5 мкм)
Б. Фритц и Е. Менке создали первый лазер на центрах окраски в KCl: Li / Fa-кристалле (λ = 2,7 мкм)
Дж. Жордмейн и Р. Миллер создали первый параметрический осциллятор на LiNbO 3 -кристалле
1966 В. К. Конюхов, О. М. Прохоров; Р. Кантровитц и другие реализовали первый газодинамический CO2 -лазер
П. П. Сорокин и Дж. Р. Ланкард построили первый импульсный лазер на красителях с накачкой лазером на рубине (λ = 756 нм)
В. Сильфаст, Г. Фовлс реализуют первый лазер на парах металлов Zn / Cd-лазер
В. Т. Уолтер построил первый лазер на парах меди (λ = 510,6 нм и λ = 578,2 нм)
1967 Ф. К. Кнойбюль и другие реализовали волноведущих газовый лазер на HCN-молекулах (λ = 337 мкм)
Т. Ф. Дойтч, К. Л. Компа и Г. С. Пиментель построили первый фтороводородный (HF) лазер
1968 Ж. И. Алферов и другие создали полупроводниковый лазер на двойной гетероструктуре с генерацией в импульсном режиме
M. Росс реализовал первый Nd:YAG-лазер с накачкой лазерными диодами
В. Т. Уолтер построил первый лазер на парах золота (λ = 637,8 нм)
1969 В. Б. Тифанни и другие построили первый киловаттный CO2 -лазер
Т. А. Кул и Р. Р. Тефенс открыли чисто химический лазер на HCl непрерывного действия
1970 O. Петерсон других получили непрерывное излучение на родамина 6G
Н. Г. Басов и другие построили первый эксимерный лазер на Xe*2
T. Чанг и T. Бриджес построили 496-мкм-CH3 F-лазер
Ж. Алферов и другие построили первые лазерные диоды на двойных гетероструктурах с непрерывной генерацией при комнатной температуре
И. Хаяши, М. Паниш на другие построили лазерные диоды с непрерывной генерацией при комнатной температуре
Л. Эсаки и Р. Тсу получили первые квантовые волновые структуры
1971 Г. Когельник и С. Шанк изобрели лазер на красителях с распределенной обратной связью
1973 M. Накамура и А. Яров создали первый DFB полупроводниковый лазер
1974 Г. Маровський использовал кольцевой резонатор для предотвращения «spatial hole burning»-эффекта
А. И. Гудзенко и С. И. Яковенко предложили реактор-лазер
1975 T. Генш, А. Шавлов, Д. Винеланд и Г. Демельт предложили охлаждения атомных пучков с помощью лазеров
1976 Дж. Гсиех построил непрерывные InGaAsP-лазерные диоды (λ = 1,25 мкм)
1977 Дж. Мадейс и другие создали первый лазер на свободных электронах
1978 Дж. Валлинг построил твердотельный лазер на александрите (BeAl 2 O 4 : Cr 3 +) с непрерывной перестройкой в диапазоне 710—820 нм
В. Мак Дермотт, Н. Пчелкин и другие создали чисто химический лазер на электронных переходах в йоде (λ = 1,315 мкм)
1979 Е. Аффолтер и Ф. Кнойбюль построили газовый лазер с распределенной обратной связью (DFB)
Х. Сода и другие создали первые поверхностно-излучающие лазерные диоды (Vertical Cavity Surface Emitting Lasers)
1980 Л. Молленауер, Р. Стоулен, Дж. Гордон впервые наблюдали солитоны в оптических волокнах
Ц. Бор получил короткие импульсы с помощью лазера на красителях
1981 Ф. Кояма и другие построили GaInAsP / InP-лазерные диоды с распределенным отражателем Брэгга (Distributed Bragg Reflector)
1982 П. Моултон построил первый титан-сапфировый лазер (Ti 3 + : Al 2 O 3) с перестройкой волн между 670 нм и 1079 нм
1983 Л. Молленауер, Р. Стоулен построил первый лазер на солитонах
1985 Д. Мэттьюс и другие открыли рентгеновский лазер с 15 нм излучением
Т. Кейн и Р. Бэйр создали монолитный кольцевой YAG-лазер с диодной накачкой
1987 Д. Пейн открыл эрбиевий усилитель с рабочей длиной волны 1,55 мкм (Erbium Doped Fiber Amplifier)
1988 С. Пейн и другие построили первый Cr: LiCaF-лазер с перестройкой длины волны в диапазоне 720 нм и 840 нм
1989 С. Пейн и другие построили первый Cr: LiCaF-лазер с перестройкой длины волны в диапазоне 780 нм и 920 нм
1991 М. Гаазе и другие получили кратковременную генерацию с голубо-зеленого лазерного диода на базе селенида цинка
1992 Г. Гриин, Г. Ляйзинг и другие создали первый органический полимерный светодиод с голубым излучением
1994 K. Ан и другие открыли первый лазер на одном атоме (λ = 791 нм)
1995 М. Андерсон и другие; К. Дэвис и другие впервые наблюдают конденсат Бозе-Эйнштейна в атомарных газах
1996 С. Накамура создал первые эффективные голубые лазерные диоды на базе нитрида галлия
Р. Френд построил полимерный лазер с оптической накачкой
1999 В. Кеттерле и другие; К. Моцума и другие открыли первый атомный лазер — когерентное усиление материальных волн при прохождении атомного резевруара
Устройство лазера

Ла́зер - квантовый генератор, источник когерентного монохроматического электромагнитного излучения оптического диапазона. Обычно состоит из трёх основных элементов:
- Источник энергии (механизм «накачки»)
- Рабочее тело
- Система зеркал («оптический резонатор»)
Источник энергии
Источник накачки подаёт энергию в систему. В его качестве могут выступать:
- электрический разрядник
- импульсная лампа
- дуговая лампа
- другой лазер
- химическая реакция
- взрывчатое вещество
Тип используемого устройства накачки напрямую зависит от используемого рабочего тела, а также определяет способ подвода энергии к системе. Например, гелий-неоновые лазеры используют электрические разряды в гелий-неоновой газовой смеси, а лазеры на основе алюмо-иттриевого граната с неодимовым легированием (Nd:YAG-лазеры) — сфокусированный свет ксеноновой импульсной лампы, эксимерные лазеры — энергию химических реакций.
Рабочее тело
Рабочее тело является основным определяющим фактором рабочей длины волны, а также остальных свойств лазера. Существует большое количество различных рабочих тел, на основе которых можно построить лазер. Рабочее тело подвергается «накачке», чтобы получить эффект инверсии электронных населённостей, что вызывает вынужденное излучение фотонов и эффект оптического усиления.
В лазерах используются следующие рабочие тела:
- Жидкость, например в лазерах на красителях. Состоят из органического растворителя, например метанола, этанола или этиленгликоля, в которых растворены химические красители, например кумарин или родамин. Конфигурация молекул красителя определяет рабочую длину волны.
- Газы, например, углекислый газ, аргон, криптон или смеси, такие как в гелий-неоновых лазерах. Такие лазеры чаще всего накачиваются электрическими разрядами.
- Твёрдые тела, такие как кристаллы и стекла. Сплошной материал обычно легируется (активируется) добавкой небольшого количества ионов хрома, неодима, эрбия или титана. Типичные используемые кристаллы: алюмо-иттриевый гранат (YAG), литиево-иттриевый фторид (YLF), сапфир (оксид алюминия) и силикатное стекло. Самые распространённые варианты: Nd:YAG, титан-сапфир, хром-сапфир (известный также как рубин), легированный хромом стронций-литий-алюминиевый фторид (Cr:LiSAF), Er:YLF и Nd:glass (неодимовое стекло). Твердотельные лазеры обычно накачиваются импульсной лампой или другим лазером.
- Полупроводники. Материал, в котором переход электронов между энергетическими уровнями может сопровождаться излучением. Полупроводниковые лазеры очень компактны, накачиваются электрическим током, что позволяет использовать их в бытовых устройствах, таких как проигрыватели компакт-дисков.
Оптический резонатор
Оптический резонатор, простейшей формой которого являются два параллельных зеркала, находится вокруг рабочего тела лазера. Вынужденное излучение рабочего тела отражается зеркалами обратно и опять усиливается. Волна может отражаться многократно до момента выхода наружу. В более сложных лазерах применяются четыре и более зеркал, образующих резонатор. Качество изготовления и установки этих зеркал является определяющим для качества полученной лазерной системы.
Как правило в твердотельных лазерах зеркала формируются на полированных торцах активного элемента. В газовых лазерах и лазерах на красителях - на торцах колбы с рабочим телом.
Для выхода излучения одно из зеркал делается полупрозрачным.
Дополнительные устройства
Также, в лазерной системе могут монтироваться дополнительные устройства для получения различных эффектов, такие как поворачивающиеся зеркала, модуляторы, фильтры и поглотители. Их применение позволяет менять параметры излучения лазера, например, длину волны, длительность импульсов и т. д.